Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38512136

RESUMO

Diffuse large B cell lymphoma of activated B cell type (ABC-DLBCL), a major cell-of-origin DLBCL subtype, is characterized by chronic active B cell receptor (BCR) signaling and NF-κB activation, which can be explained by activating mutations of the BCR signaling cascade in a minority of cases. We demonstrate that autonomous BCR signaling, akin to its essential pathogenetic role in chronic lymphocytic leukemia (CLL), can explain chronic active BCR signaling in ABC-DLBCL. 13 of 18 tested DLBCL-derived BCR, including 12 cases selected for expression of IgM, induced spontaneous calcium flux and increased phosphorylation of the BCR signaling cascade in murine triple knockout pre-B cells without antigenic stimulation or external BCR crosslinking. Autonomous BCR signaling was associated with IgM isotype, dependent on somatic BCR mutations and individual HCDR3 sequences, and largely restricted to non-GCB DLBCL. Autonomous BCR signaling represents a novel immunological oncogenic driver mechanism in DLBCL originating from individual BCR sequences and adds a new dimension to currently proposed genetics- and transcriptomics-based DLBCL classifications.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Linfócitos B , Linfoma Difuso de Grandes Células B/genética , Receptores de Antígenos de Linfócitos B , Imunoglobulina M
2.
Haematologica ; 109(3): 824-834, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439337

RESUMO

Clonal expansion of CD5-expressing B cells, commonly designated as monoclonal B lymphocytosis (MBL), is a precursor condition for chronic lymphocytic leukemia (CLL). The mechanisms driving subclinical MBL B-cell expansion and progression to CLL, occurring in approximately 1% of affected individuals, are unknown. An autonomously signaling B-cell receptor (BCR) is essential for the pathogenesis of CLL. The objectives of this study were functional characterization of the BCR of MBL in siblings of CLL patients and a comparison of genetic variants in MBL-CLL sibling pairs. Screening of peripheral blood by flow cytometry detected 0.2-480 clonal CLL-phenotype cells per microliter (median: 37/µL) in 34 of 191 (17.8%) siblings of CLL patients. Clonal BCR isolated from highly purified CLL-phenotype cells induced robust calcium mobilization in BCR-deficient murine pre-B cells in the absence of external antigen and without experimental crosslinking. This autonomous BCR signal was less intense than the signal originating from the CLL BCR of their CLL siblings. According to genotyping by single nucleotide polymorphism array, whole exome, and targeted panel sequencing, CLL risk alleles were found with high and similar prevalence in CLL patients and MBL siblings, respectively. Likewise, the prevalence of recurrent CLL-associated genetic variants was similar between CLL and matched MBL samples. However, copy number variations and small variants were frequently subclonal in MBL cells, suggesting their acquisition during subclinical clonal expansion. These findings support a stepwise model of CLL pathogenesis, in which autonomous BCR signaling leads to a non-malignant (oligo)clonal expansion of CD5+ B cells, followed by malignant progression to CLL after acquisition of pathogenic genetic variants.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia , Linfocitose , Humanos , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Irmãos , Variações do Número de Cópias de DNA , Linfocitose/genética , Receptores de Antígenos de Linfócitos B/genética , Fenótipo
3.
Front Immunol ; 13: 1016263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341420

RESUMO

Rheumatoid arthritis is an autoimmune disease characterized by joint inflammation due to autoantibodies targeting multiple self-proteins. Most patients with poor prognosis show elevated titers of IgM antibodies specifically binding to IgG. Such autoreactive antibodies are referred to as rheumatoid factor (RF). However, their biological function and contribution to disease progression remains elusive. We have recently shown that autoreactive antibodies are present in healthy individuals and play an important role in regulating physiological processes. This regulatory mechanism is determined by the class and affinity of the autoreactive antibody, as low-affinity autoreactive IgM neutralizes the recognized autoantigen while high-affinity IgM protects its autoantigen from degradation. Here, we show that RFs possessing a high affinity and mono-specificity to IgG have a stabilizing effect on IgG, whereas low-affinity polyreactive RFs neutralize IgG in vivo. These results suggest that autoreactive IgM antibodies recognizing IgG play a crucial role in regulating IgG homeostasis and that a disbalance between IgM-mediated IgG degradation and stabilization might affect the onset and progression of autoimmune diseases. Consequently, restoring this balance using low-affinity anti-IgG IgM might be a promising therapeutic approach for autoimmune diseases involving autoreactive IgG.


Assuntos
Artrite Reumatoide , Fator Reumatoide , Humanos , Autoanticorpos , Imunoglobulina M , Autoantígenos , Homeostase
5.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804817

RESUMO

Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease characterized by the accumulation of CD5+ CD19+ malignant B cells. Autonomous ligand-independent B-cell signaling is a key process involved in the development of CLL pathogenesis. Together with other cytogenetic alterations, mutations in the immunoglobulin heavy chain variable (IGHV) gene act as a prognostic marker for CLL, with mutated CLL (M-CLL) being far more indolent than unmutated CLL (U-CLL). Recent studies highlight the role of a specific light chain mutation, namely, IGLV3-21R110G, in the development and prognosis of CLL. Such a mutation increases the propensity of homotypic BCR-BCR interaction, leading to cell autonomous signaling. In this article, we review the current findings on immunoglobulin gene sequence mutations as a potential risk factor for developing CLL.

6.
Front Immunol ; 13: 842340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371049

RESUMO

The generation, differentiation, survival and activation of B cells are coordinated by signals emerging from the B cell antigen receptor (BCR) or its precursor, the pre-BCR. The adaptor protein SLP65 (also known as BLNK) is an important signaling factor that controls pre-B cell differentiation by down-regulation of PI3K signaling. Here, we investigated the mechanism by which SLP65 interferes with PI3K signaling. We found that SLP65 induces the activity of the small GTPase RHOA, which activates PTEN, a negative regulator of PI3K signaling, by enabling its translocation to the plasma membrane. The essential role of RHOA is confirmed by the complete block in early B cell development in conditional RhoA-deficient mice. The RhoA-deficient progenitor B cells showed defects in activation of immunoglobulin gene rearrangement and fail to survive both in vitro and in vivo. Reconstituting the RhoA-deficient cells with RhoA or Foxo1, a transcription factor repressed by PI3K signaling and activated by PTEN, completely restores the survival defect. However, the defect in differentiation can only be restored by RhoA suggesting a unique role for RHOA in B cell generation and selection. In full agreement, conditional RhoA-deficient mice develop increased amounts of autoreactive antibodies with age. RHOA function is also required at later stage, as inactivation of RhoA in peripheral B cells or in a transformed mature B cell line resulted in cell loss. Together, these data show that RHOA is the key signaling factor for B cell development and function by providing a crucial SLP65-activated link between BCR signaling and activation of PTEN. Moreover, the identified essential role of RHOA for the survival of transformed B cells offers the opportunity for targeting B cell malignancies by blocking RHOA function.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Células Precursoras de Linfócitos B , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Proteína rhoA de Ligação ao GTP
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131852

RESUMO

Homeostasis of metabolism by hormone production is crucial for maintaining physiological integrity, as disbalance can cause severe metabolic disorders such as diabetes mellitus. Here, we show that antibody-deficient mice and immunodeficiency patients have subphysiological blood glucose concentrations. Restoring blood glucose physiology required total IgG injections and insulin-specific IgG antibodies detected in total IgG preparations and in the serum of healthy individuals. In addition to the insulin-neutralizing anti-insulin IgG, we identified two fractions of anti-insulin IgM in the serum of healthy individuals. These autoreactive IgM fractions differ in their affinity to insulin. Interestingly, the low-affinity IgM fraction (anti-insulin IgMlow) neutralizes insulin and leads to increased blood glucose, whereas the high-affinity IgM fraction (anti-insulin IgMhigh) protects insulin from neutralization by anti-insulin IgG, thereby preventing blood glucose dysregulation. To demonstrate that anti-insulin IgMhigh acts as a protector of insulin and counteracts insulin neutralization by anti-insulin IgG, we expressed the variable regions of a high-affinity anti-insulin antibody as IgG and IgM. Remarkably, the recombinant anti-insulin IgMhigh normalized insulin function and prevented IgG-mediated insulin neutralization. These results suggest that autoreactive antibodies recognizing insulin are key regulators of blood glucose and metabolism, as they control the concentration of insulin in the blood. Moreover, our data suggest that preventing autoimmune damage and maintaining physiological homeostasis requires adaptive tolerance mechanisms generating high-affinity autoreactive IgM antibodies during memory responses.


Assuntos
Autoanticorpos/imunologia , Glicemia/imunologia , Homeostase/imunologia , Insulina/imunologia , Animais , Afinidade de Anticorpos/imunologia , Doenças Autoimunes/imunologia , Feminino , Humanos , Tolerância Imunológica/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Bioessays ; 44(3): e2100236, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34984705

RESUMO

The random nature of immunoglobulin gene segment rearrangement inevitably leads to the generation of self-reactive B cells. Avoidance of destructive autoimmune reactions is necessary in order to maintain physiological homeostasis. However, current central and peripheral tolerance concepts fail to explain the massive number of autoantibody-borne autoimmune diseases. Moreover, recent studies have shown that in physiological mouse models autoreactive B cells were neither clonally deleted nor kept in an anergic state, but were instead able to mount autoantibody responses. We propose that activation of autoreactive B cells is induced by polyvalent autoantigen complexes that can occur under physiological conditions. Repeated encounter of autoantigen complexes leads to the production of affinity-matured autoreactive IgM that protects its respective self-targets from degradation. We refer to this novel mechanism as adaptive tolerance. This article discusses the discovery of adaptive tolerance and the unexpected role of high affinity IgM autoantibodies.


Assuntos
Autoantígenos , Tolerância Imunológica , Animais , Autoanticorpos/genética , Autoantígenos/genética , Autoantígenos/metabolismo , Autoimunidade , Linfócitos B , Anergia Clonal , Imunoglobulina M/genética , Camundongos
9.
Haematologica ; 107(8): 1796-1814, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021605

RESUMO

Chronic lymphocytic leukemia (CLL) is a frequent lymphoproliferative disorder of B cells. Although inhibitors targeting signal proteins involved in B-cell antigen receptor (BCR) signaling constitute an important part of the current therapeutic protocols for CLL patients, the exact role of BCR signaling, as compared to genetic aberration, in the development and progression of CLL is controversial. In order to investigate whether BCR expression per se is pivotal for the development and maintenance of CLL B cells, we used the TCL1 mouse model. By ablating the BCR in CLL cells from TCL1 transgenic mice, we show that CLL cells cannot survive without BCR signaling and are lost within 8 weeks in diseased mice. Furthermore, we tested whether mutations augmenting B-cell signaling influence the course of CLL development and its severity. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is an integral part of the BCR signaling machinery and its activity is indispensable for B-cell survival. It is negatively regulated by the lipid phosphatase PTEN, whose loss mimics PI3K pathway activation. Herein, we show that PTEN has a key regulatory function in the development of CLL, as deletion of the Pten gene resulted in greatly accelerated onset of the disease. By contrast, deletion of the gene TP53, which encodes the tumor suppressor p53 and is highly mutated in CLL, did not accelerate disease development, confirming that development of CLL was specifically triggered by augmented PI3K activity through loss of PTEN and suggesting that CLL driver consequences most likely affect BCR signaling. Moreover, we could show that in human CLL patient samples, 64% and 81% of CLL patients with a mutated and unmutated IgH VH, respectively, show downregulated PTEN protein expression in CLL B cells if compared to healthy donor B cells. Importantly, we found that B cells derived from CLL patients had higher expression levels of the miRNA-21 and miRNA-29, which suppresses PTEN translation, compared to healthy donors. The high levels of miRNA-29 might be induced by increased PAX5 expression of the B-CLL cells. We hypothesize that downregulation of PTEN by increased expression levels of miR-21, PAX5 and miR-29 could be a novel mechanism of CLL tumorigenesis that is not established yet. Together, our study demonstrates the pivotal role for BCR signaling in CLL development and deepens our understanding of the molecular mechanisms underlying the genesis of CLL and for the development of new treatment strategies.


Assuntos
Leucemia Linfocítica Crônica de Células B , MicroRNAs , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/genética
10.
Oncogenesis ; 11(1): 1, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013097

RESUMO

The D-type cyclins (CCND1, CCND2, and CCND3) in association with CDK4/6 are known drivers of cell cycle progression. We reported previously that inactivation of FOXO1 confers growth arrest and apoptosis in B-ALL, partially mediated by subsequent depletion of CCND3. Given that previously the canonical MYC target CCND2 has been considered to play the major role in B-ALL proliferation, further investigation of the role of FOXO1 in CCND3 transcription and the role of CCND3 in B-ALL is warranted. In this study, we demonstrated that CCND3 is essential for the proliferation and survival of B-ALL, independent of the mutational background. Respectively, its expression at mRNA level exceeds that of CCND1 and CCND2. Furthermore, we identified FOXO1 as a CCND3-activating transcription factor in B-ALL. By comparing the effects of CCND3 depletion and CDK4/6 inhibition by palbociclib on B-ALL cells harboring different driver mutations, we found that the anti-apoptotic effect of CCND3 is independent of the kinase activity of the CCND3-CDK4/6 complex. Moreover, we found that CCND3 contributes to CDK8 transcription, which in part might explain the anti-apoptotic effect of CCND3. Finally, we found that increased CCND3 expression is associated with the development of resistance to palbociclib. We conclude that CCND3 plays an essential role in the maintenance of B-ALL, regardless of the underlying driver mutation. Moreover, downregulation of CCND3 expression might be superior to inhibition of CDK4/6 kinase activity in terms of B-ALL treatment.

11.
J Immunol ; 208(2): 293-302, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930782

RESUMO

A considerable proportion of peripheral B cells is autoreactive, and it is unclear how the activation of such potentially harmful cells is regulated. In this study, we show that the different activation thresholds or IgM and IgD BCRs adjust B cell activation to the diverse requirements during development. We rely on the autoreactive 3-83 model BCR to generate and analyze mice expressing exclusively autoreactive IgD BCRs on two different backgrounds that determine two stages of autoreactivity, depending on the presence or absence of the cognate Ag. By comparing these models with IgM-expressing control mice, we found that, compared with IgM, IgD has a higher activation threshold in vivo, as it requires autoantigen to enable normal B cell development, including allelic exclusion. Our data indicate that IgM provides the high sensitivity required during early developmental stages to trigger editing of any autoreactive specificities, including those enabling weak interaction with autoantigen. In contrast, IgD has the unique ability to neglect weakly interacting autoantigens while retaining reactivity to higher-affinity Ag. This IgD function enables mature B cells to ignore autoantigens while remaining able to efficiently respond to foreign threats.


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , Anergia Clonal/imunologia , Imunoglobulina D/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Especificidade de Anticorpos/imunologia , Linhagem Celular , Técnicas de Introdução de Genes , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
12.
J Leukoc Biol ; 111(4): 745-758, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34888947

RESUMO

Integrin-mediated interactions between hematopoietic cells and their microenvironment are important for the development and function of immune cells. Here, the role of the integrin adaptor Kindlin-3 in B cell homeostasis is studied. Comparing the individual steps of B cell development in B cell-specific Kindlin-3 or alpha4 integrin knockout mice, we found in both conditions a phenotype of reduced late immature, mature, and recirculating B cells in the bone marrow. In the spleen, constitutive B cell-specific Kindlin-3 knockout caused a loss of marginal zone B cells and an unexpected expansion of follicular B cells. Alpha4 integrin deficiency did not induce this phenotype. In Kindlin-3 knockout B cells VLA-4 as well as LFA-1-mediated adhesion was abrogated, and short-term homing of these cells in vivo was redirected to the spleen. Upon inducible Kindlin-3 knockout, marginal zone B cells were lost due to defective retention within 2 weeks, while follicular B cell numbers were unaltered. Kindlin-3 deficient follicular B cells displayed higher IgD, CD40, CD44, CXCR5, and EBI2 levels, and elevated PI3K signaling upon CXCR5 stimulation. They also showed transcriptional signatures of spontaneous follicular B cell activation. This activation manifested in scattered germinal centers in situ, early plasmablasts differentiation, and signs of IgG class switch.


Assuntos
Linfócitos B , Proteínas do Citoesqueleto , Animais , Linfócitos B/metabolismo , Adesão Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Integrina alfa4/metabolismo , Antígeno-1 Associado à Função Linfocitária , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo
13.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813501

RESUMO

In chronic lymphocytic leukemia (CLL), the B cell receptor (BCR) plays a critical role in disease development and progression, as indicated by the therapeutic efficacy of drugs blocking BCR signaling. However, the mechanism(s) underlying BCR responsiveness are not completely defined. Selective engagement of membrane IgM or IgD on CLL cells, each coexpressed by more than 90% of cases, leads to distinct signaling events. Since both IgM and IgD carry the same antigen-binding domains, the divergent actions of the receptors are attributed to differences in immunoglobulin (Ig) structure or the outcome of signal transduction. We showed that IgM, not IgD, level and organization associated with CLL-cell birth rate and the type and consequences of BCR signaling in humans and mice. The latter IgM-driven effects were abrogated when BCR signaling was inhibited. Collectively, these studies demonstrated a critical, selective role for IgM in BCR signaling and B cell fate decisions, possibly opening new avenues for CLL therapy.


Assuntos
Linfócitos B/imunologia , Imunoglobulina D/imunologia , Imunoglobulina M/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Animais , Feminino , Humanos , Imunoglobulina D/genética , Imunoglobulina M/genética , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/genética
14.
Acta Pharm Sin B ; 11(9): 2694-2708, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589390

RESUMO

Aberrant CXCR4/CXCL12 signaling is involved in many pathophysiological processes such as cancer and inflammatory diseases. A natural fragment of serum albumin, named EPI-X4, has previously been identified as endogenous peptide antagonist and inverse agonist of CXCR4 and is a promising compound for the development of improved analogues for the therapy of CXCR4-associated diseases. To generate optimized EPI-X4 derivatives we here performed molecular docking analysis to identify key interaction motifs of EPI-X4/CXCR4. Subsequent rational drug design allowed to increase the anti-CXCR4 activity of EPI-X4. The EPI-X4 derivative JM#21 bound CXCR4 and suppressed CXCR4-tropic HIV-1 infection more efficiently than the clinically approved small molecule CXCR4 antagonist AMD3100. EPI-X4 JM#21 did not exert toxic effects in zebrafish embryos and suppressed allergen-induced infiltration of eosinophils and other immune cells into the airways of animals in an asthma mouse model. Moreover, topical administration of the optimized EPI-X4 derivative efficiently prevented inflammation of the skin in a mouse model of atopic dermatitis. Thus, rationally designed EPI-X4 JM#21 is a novel potent antagonist of CXCR4 and the first CXCR4 inhibitor with therapeutic efficacy in atopic dermatitis. Further clinical development of this new class of CXCR4 antagonists for the therapy of atopic dermatitis, asthma and other CXCR4-associated diseases is highly warranted.

15.
Front Immunol ; 12: 709240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434193

RESUMO

Mature B cells co-express IgM and IgD B cell antigen receptors (BCR) on their surface. While IgM BCR expression is already essential at early stages of development, the role of the IgD-class BCR remains unclear as most B cell functions appeared unchanged in IgD-deficient mice. Here, we show that IgD-deficient mice have an accelerated rate of B cell responsiveness as they activate antibody production within 24h after immunization, whereas wildtype (WT) animals required 3 days to activate primary antibody responses. Strikingly, soluble monovalent antigen suppresses IgG antibody production induced by multivalent antigen in WT mice. In contrast, IgD-deficient mice were not able to modulate IgG responses suggesting that IgD controls the activation rate of B cells and subsequent antibody production by sensing and distinguishing antigen-valences. Using an insulin-derived peptide we tested the role of IgD in autoimmunity. We show that primary autoreactive antibody responses are generated in WT and in IgD-deficient mice. However, insulin-specific autoantibodies were detected earlier and caused more severe symptoms of autoimmune diabetes in IgD-deficient mice as compared to WT mice. The rapid control of autoimmune diabetes in WT animals was associated with the generation of high-affinity IgM that protects insulin from autoimmune degradation. In IgD-deficient mice, however, the generation of high-affinity protective IgM is delayed resulting in prolonged autoimmune diabetes. Our data suggest that IgD is required for the transition from primary, highly autoreactive, to secondary antigen-specific antibody responses generated by affinity maturation.


Assuntos
Afinidade de Anticorpos , Formação de Anticorpos , Imunoglobulina D/fisiologia , Animais , Autoantígenos/imunologia , Autoimunidade , Linfócitos B/imunologia , Feminino , Imunoglobulina G/biossíntese , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos B/imunologia
16.
EMBO J ; 40(17): e107621, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34369608

RESUMO

The enormous diversity of antibody specificities is generated by random rearrangement of immunoglobulin gene segments and is important for general protection against pathogens. Since random rearrangement harbors the risk of producing self-destructive antibodies, it is assumed that autoreactive antibody specificities are removed during early B-cell development leading to a peripheral compartment devoid of autoreactivity. Here, we immunized wild-type mice with insulin as a common self-antigen and monitored diabetes symptoms as a measure for autoimmune disease. Our results show that autoreactive anti-insulin IgM and IgG antibodies associated with autoimmune diabetes can readily be generated in wild-type animals. Surprisingly, recall immunizations induced increased titers of high-affinity insulin-specific IgM, which prevented autoimmune diabetes. We refer to this phenomenon as adaptive tolerance, in which high-affinity memory IgM prevents autoimmune destruction by competing with self-destructive antibodies. Together, this study suggests that B-cell tolerance is not defined by the absolute elimination of autoreactive specificities, as harmful autoantibody responses can be generated in wild-type animals. In contrast, inducible generation of autoantigen-specific affinity-matured IgM acts as a protective mechanism preventing self-destruction.


Assuntos
Anticorpos Neutralizantes/imunologia , Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Imunoglobulina M/imunologia , Memória Imunológica , Insulina/imunologia , Animais , Linfócitos B/imunologia , Feminino , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL
17.
Haematologica ; 106(8): 2170-2179, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34011137

RESUMO

The COVID-19 pandemic has resulted in significant morbidity and mortality worldwide. To prevent severe infection, mass COVID-19 vaccination campaigns with several vaccine types are currently underway. We report pathological and immunological findings in 8 patients who developed vaccine-induced immune thrombotic thrombocytopenia (VITT) after administration of SARS-CoV-2 vaccine ChAdOx1 nCoV-19. We analyzed patient material using enzyme immune assays, flow cytometry and heparin-induced platelet aggregation assay and performed autopsies on two fatal cases. Eight patients (5 female, 3 male) with a median age of 41.5 years (range, 24 to 53) were referred to us with suspected thrombotic complications 6 to 20 days after ChAdOx1 nCoV-19 vaccination. All patients had thrombocytopenia at admission. Patients had a median platelet count of 46.5 x109/L (range, 8 to 92). Three had a fatal outcome and 5 were successfully treated. Autopsies showed arterial and venous thromboses in various organs and the occlusion of glomerular capillaries by hyaline thrombi. Sera from VITT patients contain high titer antibodies against platelet factor 4 (PF4) (OD 2.59±0.64). PF4 antibodies in VITT patients induced significant increase in procoagulant markers (P-selectin and phosphatidylserine externalization) compared to healthy volunteers and healthy vaccinated volunteers. The generation of procoagulant platelets was PF4 and heparin dependent. We demonstrate the contribution of antibody-mediated platelet activation in the pathogenesis of VITT.


Assuntos
COVID-19 , Trombocitopenia , Adulto , Autoanticorpos , Plaquetas , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Trombocitopenia/induzido quimicamente , Vacinação/efeitos adversos , Adulto Jovem
18.
Mol Cell ; 81(10): 2094-2111.e9, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33878293

RESUMO

Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.


Assuntos
Autoimunidade , Neoplasias/enzimologia , Neoplasias/prevenção & controle , Quinase Syk/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Animais , Antígenos CD19/metabolismo , Linfócitos B , Cálcio/metabolismo , Diferenciação Celular , Transformação Celular Neoplásica , Ativação Enzimática , Humanos , Tolerância Imunológica , Linfoma de Células B/enzimologia , Linfoma de Células B/patologia , Camundongos , Modelos Genéticos , Fatores de Transcrição NFATC/metabolismo , Proteínas de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
19.
Commun Biol ; 4(1): 73, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452446

RESUMO

Central nervous system (CNS) involvement remains a challenge in the diagnosis and treatment of acute lymphoblastic leukemia (ALL). In this study, we identify CD79a (also known as Igα), a signaling component of the preB cell receptor (preBCR), to be associated with CNS-infiltration and -relapse in B-cell precursor (BCP)-ALL patients. Furthermore, we show that downregulation of CD79a hampers the engraftment of leukemia cells in different murine xenograft models, particularly in the CNS.


Assuntos
Antígenos CD79/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Front Oncol ; 11: 771669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993136

RESUMO

Advanced genome-wide association studies (GWAS) identified several transforming mutations in susceptible loci which are recognized as valuable prognostic markers in chronic lymphocytic leukemia (CLL) and B cell lymphoma (BCL). Alongside, robust genetic manipulations facilitated the generation of preclinical mouse models to validate mutations associated with poor prognosis and refractory B cell malignancies. Taken together, these studies identified new prognostic markers that could achieve characteristics of precision biomarkers for molecular diagnosis. On the contrary, the idea of augmented B cell antigen receptor (BCR) signaling as a transforming cue has somewhat receded despite the efficacy of Btk and Syk inhibitors. Recent studies from several research groups pointed out that acquired mutations in BCR components serve as faithful biomarkers, which become important for precision diagnostics and therapy, due to their relevant role in augmented BCR signaling and CLL pathogenesis. For example, we showed that expression of a single point mutated immunoglobulin light chain (LC) recombined through the variable gene segment IGLV3-21, named IGLV3-21R110, marks severe CLL cases. In this perspective, we summarize the molecular mechanisms fine-tuning B cell transformation, focusing on immunoglobulin point mutations and recurrent mutations in tumor suppressors. We present a stochastic model for gain-of-autonomous BCR signaling and subsequent neoplastic transformation. Of note, additional mutational analyses on immunoglobulin heavy chain (HC) derived from non-subset #2 CLL IGLV3-21R110 cases endorses our perspective. Altogether, we propose a model of malignant transformation in which the augmented BCR signaling creates a conducive platform for the appearance of transforming mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...